Research Associate in Improving Probabilistic Models for Automated Alignment of Palaeoclimate Records

University of Cambridge Department of Geography

United Kingdom

Improving probabilistic models for automated alignment of Palaeoclimate records

The role will be working on a new project funded by the Isaac Newton Trust about probabilistic algorithms for automated alignment of palaeoclimate records. The post holder will be based in the Department of Geography and will work under the guidance of Dr Francesco Muschitiello.

The stratigraphic correlation of marine sediment cores, speleothems and ice core records plays a central role in palaeoclimate research as it used to develop mutually consistent timescales for climate proxies measured in these archives. To present, the vast majority of stratigraphic correlations are performed manually, which is inherently subjective, often difficult to reproduce and comes without quantification of the confidence of correlations. Alignment algorithms grounded on probability theory can help us address these limitations. In particular, they have an enormous and, as of yet, underexploited potential for automating the correlation of proxy timeseries, ensuring reproducibility and deriving confidence bands associated with the alignment procedure.

This project aims at upgrading an existing automated algorithm for stratigraphic correlation and deploying the first graphical user interface (GUI) to perform probabilistic alignment of palaeoclimate records. The successful applicant will: 1) develop an improved Bayesian alignment algorithm that models alignments based on multiple proxy signals and incorporates prior knowledge on the depositional history of the climate archives used for correlation; 2) design a dedicated GUI software to facilitate the usability of the algorithm. The new algorithm and related GUI will provide an essential tool to construct robust chronologies for climate archives with poor independent age control and will increase the accessibility of probabilistic alignment methods to the wide palaeoclimate community .

Eligible candidates must have a PhD in Earth Science, Geological Science, Applied Mathematics, Computer Science, or similar. A background in Mathematics, Bayesian Statistics, and Stochastic Processes is desirable. Prior research experience in building probabilistic and statistical models for geological data would be a significant advantage. Applicants must have strong programming skills and proven experience of publishing high-quality research articles. They must be highly motivated and should have excellent organisational and communication skills, and be able to work well as part of a team. The successful candidate will be based in Cambridge and have the opportunity to participate in a wide range of departmental and University activities, including the departmental 'Climate and Environmental Dynamics' research group, departmental seminars, and reading groups across the University.

Informal inquiries should be directed to Dr Francesco Muschitiello by email,

Fixed-term: The funds for this post are available for 14 months in the first instance.

Click the 'Apply' button below to register an account with our recruitment system (if you have not already) and apply online.

Please quote reference LC25610 on your application and in any correspondence about this vacancy.

The University actively supports equality, diversity and inclusion and encourages applications from all sections of society.

The University has a responsibility to ensure that all employees are eligible to live and work in the UK.

In your application, please refer to


amsterdam uni

antwerp uni

cambridge uni

florida uni

hamburg uni

harvard uni

hiroshima uni

oslo uni

purdue uni

ryerson uni

shanghai jiao tong uni

stockholm uni